\(\int (a+b \cos (c+d x))^{5/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [1034]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 372 \[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=-\frac {\left (12 a^2 B-24 b^2 B+a b (27 A-56 C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{12 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (12 a^3 B+48 a b^2 B+8 b^3 (3 A+C)+a^2 b (33 A+16 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{12 d \sqrt {a+b \cos (c+d x)}}+\frac {a \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}-\frac {b (21 A b+12 a B-8 b C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

-1/12*b*(21*A*b+12*B*a-8*C*b)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d-1/12*(12*B*a^2-24*B*b^2+a*b*(27*A-56*C))*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*
x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+1/12*(12*B*a^3+48*B*a*b^2+8*b^3*(3*A+C)+a^2*b*(33*A+16*C))*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+
c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+1/4*a*(15*A*b^2+20*B*a*b+4*a^2*(A+2*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)
/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/
(a+b*cos(d*x+c))^(1/2)+1/4*(5*A*b+4*B*a)*(a+b*cos(d*x+c))^(3/2)*tan(d*x+c)/d+1/2*A*(a+b*cos(d*x+c))^(5/2)*sec(
d*x+c)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 1.57 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {3126, 3128, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=-\frac {\left (12 a^2 B+a b (27 A-56 C)-24 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{12 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {a \left (4 a^2 (A+2 C)+20 a b B+15 A b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (12 a^3 B+a^2 b (33 A+16 C)+48 a b^2 B+8 b^3 (3 A+C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{12 d \sqrt {a+b \cos (c+d x)}}-\frac {b \sin (c+d x) (12 a B+21 A b-8 b C) \sqrt {a+b \cos (c+d x)}}{12 d}+\frac {(4 a B+5 A b) \tan (c+d x) (a+b \cos (c+d x))^{3/2}}{4 d}+\frac {A \tan (c+d x) \sec (c+d x) (a+b \cos (c+d x))^{5/2}}{2 d} \]

[In]

Int[(a + b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

-1/12*((12*a^2*B - 24*b^2*B + a*b*(27*A - 56*C))*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)
])/(d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((12*a^3*B + 48*a*b^2*B + 8*b^3*(3*A + C) + a^2*b*(33*A + 16*C))*S
qrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(12*d*Sqrt[a + b*Cos[c + d*x]]) + (a*
(15*A*b^2 + 20*a*b*B + 4*a^2*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a
 + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) - (b*(21*A*b + 12*a*B - 8*b*C)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(
12*d) + ((5*A*b + 4*a*B)*(a + b*Cos[c + d*x])^(3/2)*Tan[c + d*x])/(4*d) + (A*(a + b*Cos[c + d*x])^(5/2)*Sec[c
+ d*x]*Tan[c + d*x])/(2*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3128

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int (a+b \cos (c+d x))^{3/2} \left (\frac {1}{2} (5 A b+4 a B)+(2 b B+a (A+2 C)) \cos (c+d x)-\frac {1}{2} b (3 A-4 C) \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx \\ & = \frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int \sqrt {a+b \cos (c+d x)} \left (\frac {1}{4} \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right )-\frac {1}{2} b (a A-4 b B-8 a C) \cos (c+d x)-\frac {1}{4} b (21 A b+12 a B-8 b C) \cos ^2(c+d x)\right ) \sec (c+d x) \, dx \\ & = -\frac {b (21 A b+12 a B-8 b C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{3} \int \frac {\left (\frac {3}{8} a \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right )+\frac {1}{4} b \left (36 a b B+4 b^2 (3 A+C)+3 a^2 (A+12 C)\right ) \cos (c+d x)-\frac {1}{8} b \left (27 a A b+12 a^2 B-24 b^2 B-56 a b C\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = -\frac {b (21 A b+12 a B-8 b C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}-\frac {\int \frac {\left (-\frac {3}{8} a b \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right )-\frac {1}{8} b \left (12 a^3 B+48 a b^2 B+8 b^3 (3 A+C)+a^2 b (33 A+16 C)\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{3 b}+\frac {1}{24} \left (-27 a A b-12 a^2 B+24 b^2 B+56 a b C\right ) \int \sqrt {a+b \cos (c+d x)} \, dx \\ & = -\frac {b (21 A b+12 a B-8 b C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{8} \left (a \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx-\frac {1}{24} \left (-12 a^3 B-48 a b^2 B-8 b^3 (3 A+C)-a^2 b (33 A+16 C)\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left (\left (-27 a A b-12 a^2 B+24 b^2 B+56 a b C\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{24 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {\left (27 a A b+12 a^2 B-24 b^2 B-56 a b C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{12 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {b (21 A b+12 a B-8 b C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\left (a \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \cos (c+d x)}}-\frac {\left (\left (-12 a^3 B-48 a b^2 B-8 b^3 (3 A+C)-a^2 b (33 A+16 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{24 \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {\left (27 a A b+12 a^2 B-24 b^2 B-56 a b C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{12 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {\left (12 a^3 B+48 a b^2 B+8 b^3 (3 A+C)+a^2 b (33 A+16 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{12 d \sqrt {a+b \cos (c+d x)}}+\frac {a \left (15 A b^2+20 a b B+4 a^2 (A+2 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}-\frac {b (21 A b+12 a B-8 b C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{12 d}+\frac {(5 A b+4 a B) (a+b \cos (c+d x))^{3/2} \tan (c+d x)}{4 d}+\frac {A (a+b \cos (c+d x))^{5/2} \sec (c+d x) \tan (c+d x)}{2 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.97 (sec) , antiderivative size = 492, normalized size of antiderivative = 1.32 \[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {\frac {8 b \left (36 a b B+4 b^2 (3 A+C)+3 a^2 (A+12 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (108 a^2 b B+24 b^3 B+24 a^3 (A+2 C)+7 a b^2 (9 A+8 C)\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 i \left (-27 a A b-12 a^2 B+24 b^2 B+56 a b C\right ) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}+4 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \left (3 a (9 A b+4 a B) \sin (c+d x)+4 b^2 C \sin (2 (c+d x))+6 a^2 A \tan (c+d x)\right )}{48 d} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

((8*b*(36*a*b*B + 4*b^2*(3*A + C) + 3*a^2*(A + 12*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2
, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (2*(108*a^2*b*B + 24*b^3*B + 24*a^3*(A + 2*C) + 7*a*b^2*(9*A + 8*
C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + (
(2*I)*(-27*a*A*b - 12*a^2*B + 24*b^2*B + 56*a*b*C)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c
 + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]
]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a -
 b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a
*b*Sqrt[-(a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]*(3*a*(9*A*b + 4*a*B)*Sin[c + d*x] + 4*b^2*C*
Sin[2*(c + d*x)] + 6*a^2*A*Tan[c + d*x]))/(48*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2374\) vs. \(2(429)=858\).

Time = 69.97 (sec) , antiderivative size = 2375, normalized size of antiderivative = 6.38

method result size
default \(\text {Expression too large to display}\) \(2375\)
parts \(\text {Expression too large to display}\) \(2624\)

[In]

int((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1
/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+2*C*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b)
)^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))
^(1/2))-2*B*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/
2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+6*B*a*b^2*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1
/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+6*a^2*b*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos
(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(c
os(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-6*C*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(
a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a
-b))^(1/2))+8*C*b^3*(-1/6/b*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+1/
6/b*(a-b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4
+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/12/b^2*(-2*a+6*b)*(a-b)*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin
(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/
(a-b))^(1/2))))+2*A*a^3*(-1/2*cos(1/2*d*x+1/2*c)/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2
)/(-1+2*cos(1/2*d*x+1/2*c)^2)^2+3/4*b/a^2*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*
c)^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)-1/8*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(
a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a
-b))^(1/2))+3/8/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+
1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-3/8*b^2/a^2*(sin
(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2
*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos
(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(
cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-3/8/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/
(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*
b/(a-b))^(1/2))*b^2)-(2*B*b^3+6*C*a*b^2-4*C*b^3)*(a-b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b
+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b*(EllipticF(cos(1/2*d*x+1/2*c
),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)))+2*a^2*(3*A*b+B*a)*(-cos(1/2*d*x+1/2*c)
/a*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)+1/2*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1
/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x
+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-
2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+
1/2/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(
a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))-2*a*(3*A*b^2+3*B*a*b+C*a
^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)
*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/sin(1/2*d*x+1/2*c)/(-2*b*sin
(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [F]

\[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

integral((C*b^2*cos(d*x + c)^4 + (2*C*a*b + B*b^2)*cos(d*x + c)^3 + A*a^2 + (C*a^2 + 2*B*a*b + A*b^2)*cos(d*x
+ c)^2 + (B*a^2 + 2*A*a*b)*cos(d*x + c))*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^3, x)

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^3, x)

Giac [F]

\[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int(((a + b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^3,x)

[Out]

int(((a + b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^3, x)